\(\int \frac {x^6 (d+e x)}{(d^2-e^2 x^2)^{7/2}} \, dx\) [20]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 147 \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d+8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}+\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^7} \]

[Out]

1/5*x^5*(e*x+d)/e^2/(-e^2*x^2+d^2)^(5/2)-1/15*x^3*(6*e*x+5*d)/e^4/(-e^2*x^2+d^2)^(3/2)-d*arctan(e*x/(-e^2*x^2+
d^2)^(1/2))/e^7+1/5*x*(8*e*x+5*d)/e^6/(-e^2*x^2+d^2)^(1/2)+16/5*(-e^2*x^2+d^2)^(1/2)/e^7

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {833, 655, 223, 209} \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=-\frac {d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^7}+\frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}+\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}+\frac {x (5 d+8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}} \]

[In]

Int[(x^6*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(x^5*(d + e*x))/(5*e^2*(d^2 - e^2*x^2)^(5/2)) - (x^3*(5*d + 6*e*x))/(15*e^4*(d^2 - e^2*x^2)^(3/2)) + (x*(5*d +
 8*e*x))/(5*e^6*Sqrt[d^2 - e^2*x^2]) + (16*Sqrt[d^2 - e^2*x^2])/(5*e^7) - (d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]]
)/e^7

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 - 1)*(a + c*x^2)^(p + 1)*((a*(e*f + d*g) - (c*d*f - a*e*g)*x)/(2*a*c*(p + 1))), x] - Dist[1/(2*a*c*(p + 1)),
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c*
d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ
[m, 1] && (EqQ[d, 0] || (EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {x^4 \left (5 d^3+6 d^2 e x\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2 e^2} \\ & = \frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {x^2 \left (15 d^5+24 d^4 e x\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^4 e^4} \\ & = \frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d+8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {15 d^7+48 d^6 e x}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^6 e^6} \\ & = \frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d+8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}+\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{e^6} \\ & = \frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d+8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}+\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{e^6} \\ & = \frac {x^5 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d+6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d+8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}+\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^7} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.86 \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {\frac {\sqrt {d^2-e^2 x^2} \left (48 d^5-33 d^4 e x-87 d^3 e^2 x^2+52 d^2 e^3 x^3+38 d e^4 x^4-15 e^5 x^5\right )}{(d-e x)^3 (d+e x)^2}+30 d \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{15 e^7} \]

[In]

Integrate[(x^6*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

((Sqrt[d^2 - e^2*x^2]*(48*d^5 - 33*d^4*e*x - 87*d^3*e^2*x^2 + 52*d^2*e^3*x^3 + 38*d*e^4*x^4 - 15*e^5*x^5))/((d
 - e*x)^3*(d + e*x)^2) + 30*d*ArcTan[(e*x)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])])/(15*e^7)

Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.50

method result size
default \(e \left (-\frac {x^{6}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {6 d^{2} \left (\frac {x^{4}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {4 d^{2} \left (\frac {x^{2}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {2 d^{2}}{15 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\right )}{e^{2}}\right )}{e^{2}}\right )+d \left (\frac {x^{5}}{5 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {\frac {x^{3}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\frac {x}{e^{2} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{2} \sqrt {e^{2}}}}{e^{2}}}{e^{2}}\right )\) \(220\)
risch \(\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{e^{7}}-\frac {d \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{6} \sqrt {e^{2}}}-\frac {d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{24 e^{9} \left (x +\frac {d}{e}\right )^{2}}+\frac {25 d \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{48 e^{8} \left (x +\frac {d}{e}\right )}-\frac {23 d^{2} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{60 e^{9} \left (x -\frac {d}{e}\right )^{2}}-\frac {493 d \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{240 e^{8} \left (x -\frac {d}{e}\right )}-\frac {d^{3} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{20 e^{10} \left (x -\frac {d}{e}\right )^{3}}\) \(283\)

[In]

int(x^6*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x,method=_RETURNVERBOSE)

[Out]

e*(-x^6/e^2/(-e^2*x^2+d^2)^(5/2)+6*d^2/e^2*(x^4/e^2/(-e^2*x^2+d^2)^(5/2)-4*d^2/e^2*(1/3*x^2/e^2/(-e^2*x^2+d^2)
^(5/2)-2/15*d^2/e^4/(-e^2*x^2+d^2)^(5/2))))+d*(1/5*x^5/e^2/(-e^2*x^2+d^2)^(5/2)-1/e^2*(1/3*x^3/e^2/(-e^2*x^2+d
^2)^(3/2)-1/e^2*(x/e^2/(-e^2*x^2+d^2)^(1/2)-1/e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2)))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 263 vs. \(2 (129) = 258\).

Time = 0.29 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.79 \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {48 \, d e^{5} x^{5} - 48 \, d^{2} e^{4} x^{4} - 96 \, d^{3} e^{3} x^{3} + 96 \, d^{4} e^{2} x^{2} + 48 \, d^{5} e x - 48 \, d^{6} + 30 \, {\left (d e^{5} x^{5} - d^{2} e^{4} x^{4} - 2 \, d^{3} e^{3} x^{3} + 2 \, d^{4} e^{2} x^{2} + d^{5} e x - d^{6}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + {\left (15 \, e^{5} x^{5} - 38 \, d e^{4} x^{4} - 52 \, d^{2} e^{3} x^{3} + 87 \, d^{3} e^{2} x^{2} + 33 \, d^{4} e x - 48 \, d^{5}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{15 \, {\left (e^{12} x^{5} - d e^{11} x^{4} - 2 \, d^{2} e^{10} x^{3} + 2 \, d^{3} e^{9} x^{2} + d^{4} e^{8} x - d^{5} e^{7}\right )}} \]

[In]

integrate(x^6*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

1/15*(48*d*e^5*x^5 - 48*d^2*e^4*x^4 - 96*d^3*e^3*x^3 + 96*d^4*e^2*x^2 + 48*d^5*e*x - 48*d^6 + 30*(d*e^5*x^5 -
d^2*e^4*x^4 - 2*d^3*e^3*x^3 + 2*d^4*e^2*x^2 + d^5*e*x - d^6)*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (15*e
^5*x^5 - 38*d*e^4*x^4 - 52*d^2*e^3*x^3 + 87*d^3*e^2*x^2 + 33*d^4*e*x - 48*d^5)*sqrt(-e^2*x^2 + d^2))/(e^12*x^5
 - d*e^11*x^4 - 2*d^2*e^10*x^3 + 2*d^3*e^9*x^2 + d^4*e^8*x - d^5*e^7)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 10.51 (sec) , antiderivative size = 1821, normalized size of antiderivative = 12.39 \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\text {Too large to display} \]

[In]

integrate(x**6*(e*x+d)/(-e**2*x**2+d**2)**(7/2),x)

[Out]

d*Piecewise((30*I*d**5*sqrt(-1 + e**2*x**2/d**2)*acosh(e*x/d)/(30*d**5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**
3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 30*d*e**11*x**4*sqrt(-1 + e**2*x**2/d**2)) - 15*pi*d**5*sqrt(-1 + e**2
*x**2/d**2)/(30*d**5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 30*d*e**11
*x**4*sqrt(-1 + e**2*x**2/d**2)) - 30*I*d**4*e*x/(30*d**5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*s
qrt(-1 + e**2*x**2/d**2) + 30*d*e**11*x**4*sqrt(-1 + e**2*x**2/d**2)) - 60*I*d**3*e**2*x**2*sqrt(-1 + e**2*x**
2/d**2)*acosh(e*x/d)/(30*d**5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 3
0*d*e**11*x**4*sqrt(-1 + e**2*x**2/d**2)) + 30*pi*d**3*e**2*x**2*sqrt(-1 + e**2*x**2/d**2)/(30*d**5*e**7*sqrt(
-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 30*d*e**11*x**4*sqrt(-1 + e**2*x**2/d**2)
) + 70*I*d**2*e**3*x**3/(30*d**5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2)
+ 30*d*e**11*x**4*sqrt(-1 + e**2*x**2/d**2)) + 30*I*d*e**4*x**4*sqrt(-1 + e**2*x**2/d**2)*acosh(e*x/d)/(30*d**
5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 30*d*e**11*x**4*sqrt(-1 + e**
2*x**2/d**2)) - 15*pi*d*e**4*x**4*sqrt(-1 + e**2*x**2/d**2)/(30*d**5*e**7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*
e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 30*d*e**11*x**4*sqrt(-1 + e**2*x**2/d**2)) - 46*I*e**5*x**5/(30*d**5*e**
7*sqrt(-1 + e**2*x**2/d**2) - 60*d**3*e**9*x**2*sqrt(-1 + e**2*x**2/d**2) + 30*d*e**11*x**4*sqrt(-1 + e**2*x**
2/d**2)), Abs(e**2*x**2/d**2) > 1), (-15*d**5*sqrt(1 - e**2*x**2/d**2)*asin(e*x/d)/(15*d**5*e**7*sqrt(1 - e**2
*x**2/d**2) - 30*d**3*e**9*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d*e**11*x**4*sqrt(1 - e**2*x**2/d**2)) + 15*d**4
*e*x/(15*d**5*e**7*sqrt(1 - e**2*x**2/d**2) - 30*d**3*e**9*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d*e**11*x**4*sqr
t(1 - e**2*x**2/d**2)) + 30*d**3*e**2*x**2*sqrt(1 - e**2*x**2/d**2)*asin(e*x/d)/(15*d**5*e**7*sqrt(1 - e**2*x*
*2/d**2) - 30*d**3*e**9*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d*e**11*x**4*sqrt(1 - e**2*x**2/d**2)) - 35*d**2*e*
*3*x**3/(15*d**5*e**7*sqrt(1 - e**2*x**2/d**2) - 30*d**3*e**9*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d*e**11*x**4*
sqrt(1 - e**2*x**2/d**2)) - 15*d*e**4*x**4*sqrt(1 - e**2*x**2/d**2)*asin(e*x/d)/(15*d**5*e**7*sqrt(1 - e**2*x*
*2/d**2) - 30*d**3*e**9*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d*e**11*x**4*sqrt(1 - e**2*x**2/d**2)) + 23*e**5*x*
*5/(15*d**5*e**7*sqrt(1 - e**2*x**2/d**2) - 30*d**3*e**9*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d*e**11*x**4*sqrt(
1 - e**2*x**2/d**2)), True)) + e*Piecewise((16*d**6/(5*d**4*e**8*sqrt(d**2 - e**2*x**2) - 10*d**2*e**10*x**2*s
qrt(d**2 - e**2*x**2) + 5*e**12*x**4*sqrt(d**2 - e**2*x**2)) - 40*d**4*e**2*x**2/(5*d**4*e**8*sqrt(d**2 - e**2
*x**2) - 10*d**2*e**10*x**2*sqrt(d**2 - e**2*x**2) + 5*e**12*x**4*sqrt(d**2 - e**2*x**2)) + 30*d**2*e**4*x**4/
(5*d**4*e**8*sqrt(d**2 - e**2*x**2) - 10*d**2*e**10*x**2*sqrt(d**2 - e**2*x**2) + 5*e**12*x**4*sqrt(d**2 - e**
2*x**2)) - 5*e**6*x**6/(5*d**4*e**8*sqrt(d**2 - e**2*x**2) - 10*d**2*e**10*x**2*sqrt(d**2 - e**2*x**2) + 5*e**
12*x**4*sqrt(d**2 - e**2*x**2)), Ne(e, 0)), (x**8/(8*(d**2)**(7/2)), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 290 vs. \(2 (129) = 258\).

Time = 0.29 (sec) , antiderivative size = 290, normalized size of antiderivative = 1.97 \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\frac {1}{15} \, d x {\left (\frac {15 \, x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {20 \, d^{2} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{4}} + \frac {8 \, d^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{6}}\right )} - \frac {x^{6}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e} - \frac {d x {\left (\frac {3 \, x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{2}} - \frac {2 \, d^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}}\right )}}{3 \, e^{2}} + \frac {6 \, d^{2} x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{3}} - \frac {8 \, d^{4} x^{2}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{5}} + \frac {16 \, d^{6}}{5 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{7}} + \frac {4 \, d^{3} x}{15 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{6}} - \frac {7 \, d x}{15 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{6}} - \frac {d \arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{\sqrt {e^{2}} e^{6}} \]

[In]

integrate(x^6*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

1/15*d*x*(15*x^4/((-e^2*x^2 + d^2)^(5/2)*e^2) - 20*d^2*x^2/((-e^2*x^2 + d^2)^(5/2)*e^4) + 8*d^4/((-e^2*x^2 + d
^2)^(5/2)*e^6)) - x^6/((-e^2*x^2 + d^2)^(5/2)*e) - 1/3*d*x*(3*x^2/((-e^2*x^2 + d^2)^(3/2)*e^2) - 2*d^2/((-e^2*
x^2 + d^2)^(3/2)*e^4))/e^2 + 6*d^2*x^4/((-e^2*x^2 + d^2)^(5/2)*e^3) - 8*d^4*x^2/((-e^2*x^2 + d^2)^(5/2)*e^5) +
 16/5*d^6/((-e^2*x^2 + d^2)^(5/2)*e^7) + 4/15*d^3*x/((-e^2*x^2 + d^2)^(3/2)*e^6) - 7/15*d*x/(sqrt(-e^2*x^2 + d
^2)*e^6) - d*arcsin(e^2*x/(d*sqrt(e^2)))/(sqrt(e^2)*e^6)

Giac [F]

\[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int { \frac {{\left (e x + d\right )} x^{6}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate(x^6*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((e*x + d)*x^6/(-e^2*x^2 + d^2)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^6 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx=\int \frac {x^6\,\left (d+e\,x\right )}{{\left (d^2-e^2\,x^2\right )}^{7/2}} \,d x \]

[In]

int((x^6*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x)

[Out]

int((x^6*(d + e*x))/(d^2 - e^2*x^2)^(7/2), x)